Skip to main content

Advertisement

Log in

ctDNA interaction of Co-containing Keggin polyoxomolybdate and in vitro antitumor activity of free and its nano-encapsulated derivatives

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Polyoxometalates (POMs) are negatively charged clusters consisting of transition metals and oxygen atoms. The antiviral and antitumor activities are the dominant activities of POMs in pharmacology and medicine. Based on Co-containing Keggin polyoxomolybdate (K6[SiMo11O39Co(H2O)].nH2O), nanosized starch, and lipid-encapsulated derivatives (abbreviated as SiMo11Co, SEP and LEP, respectively) were synthesized and characterized by FT-IR spectroscopy, ICP, TG analysis, SEM and TEM images. The results show that the SiMo11Co retains its parent structure after encapsulation by starch and lipid nanoparticles. The biological activity of SiMo11Co has been evaluated by investigating its binding ability to calf thymus DNA (ctDNA), using UV–Vis absorption spectroscopy, fluorescence quenching and fluorescence Scatchard plots. The obtained results of absorption titration rule out the intercalating binding mode and propose the groove or outside stacking binding for SiMo11Co. These results were authenticated by fluorescence quenching experiments and scatchard plots. Absorption spectral traces reveal 10.21 % hyperchromism for SiMo11Co. The value of 7.6 × 103 M−1 was obtained for binding constant (Kb) of SiMo11Co to ctDNA. Furthermore, the in vitro antitumor activity of SiMo11Co and nano-encapsulated forms was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay that was carried out on two types of human cancer cells, MCF-7 (breast cancer cells) and HEK-293 (Human Embryonic Kidney). The results represent the enhancement of cell penetration and antitumor activity of SiMo11Co due to its encapsulation in starch or lipid nanoparticles. However, this observed enhancement for the lipid relative to the starch nanocapsule can be attributed to its smaller size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.T. Pope, Heteropoly, isopoly oxometalates (Springer-Verlag, Berlin; New York, 1983), p. 180

    Book  Google Scholar 

  2. M.T. Pope, A. Müller, Polyoxometalates: from platonic solids to anti-retroviral activity (Kluwer Academic Publishers, Dordrecht Boston, 1994), p. 411

    Book  Google Scholar 

  3. M.T. Pope, A. Müller, Polyoxometalate chemistry: from topology via self-assembly to applications (Kluwer Academic Publishers, Dordrecht Boston, 1994), p. 427

    Google Scholar 

  4. J.J. Borrás-Almenar, Polyoxometalate molecular science (Kluwer Academic Publishers, Dordrecht Boston, 2003), p. 475

    Book  Google Scholar 

  5. N. Casan-Pastor, P. Gomez-Romero, Front Biosci. 9, 1759 (2004)

    Article  CAS  Google Scholar 

  6. J.T. Rhule, C.L. Hill, D.A. Judd, R.F. Schinazi, Chem. Rev. 98, 327 (1998)

    Article  CAS  Google Scholar 

  7. H. Yanagie, A. Ogata, S. Mitsui, T. Hisa, T. Yamase, M. Eriguchi, Biomed. Pharmacother. 60, 349 (2006)

    Article  CAS  Google Scholar 

  8. Z. Dong, R. Tan, J. Cao, Y. Yang, C. Kong, J. Du, S. Zhu, Y. Zhang, J. Lu, B. Huang, S. Liu, Eur. J. Med. Chem. 46, 2477 (2011)

    Article  CAS  Google Scholar 

  9. Y. Zhang, J.-Q. Shen, L.-H. Zheng, Z.-M. Zhang, Y.-X. Li, E.-B. Wang, Cryst. Growth Des. 14, 110 (2014)

    Article  CAS  Google Scholar 

  10. T. Yamase, T. Ikawa, Bull. Chem. Soc. Jpn 50, 746 (1977)

    Article  CAS  Google Scholar 

  11. A. Ogata, S. Mitsui, H. Yanagie, H. Kasano, T. Hisa, T. Yamase, M. Eriguchi, Biomed. Pharmacother. 59, 240 (2005)

    Article  CAS  Google Scholar 

  12. T. Yamase, J. Mater. Chem. 15, 4773 (2005)

    Article  CAS  Google Scholar 

  13. Q. Wu, J. Wang, L. Zhang, A. Hong, J. Ren, Angew. Chem. Int. Ed. 44, 4048 (2005)

    Article  CAS  Google Scholar 

  14. A. Ogata, H. Yanagie, E. Ishikawa, Y. Morishita, S. Mitsui, A. Yamashita, K. Hasumi, S. Takamoto, T. Yamase, M. Eriguchi, Br. J. Cancer 98, 399 (2007)

    Article  Google Scholar 

  15. J.K. Barton, E. Lolis, J. Am. Chem. 107, 708 (1985)

    Article  CAS  Google Scholar 

  16. M.T. Carter, M. Rodriguez, A.J. Bard, J. Am. Chem. 111, 8901 (1989)

    Article  CAS  Google Scholar 

  17. N. Grover, N. Gupta, H.H. Thorp, J. Am. Chem. 114, 3390 (1992)

    Article  CAS  Google Scholar 

  18. W.A. Kalsbeck, H.H. Thorp, J. Am. Chem. 115, 7146 (1993)

    Article  CAS  Google Scholar 

  19. S.J. Lippard, Acc. Chem. Res. 11, 211 (1978)

    Article  CAS  Google Scholar 

  20. G.S. Manning, Acc. Chem. Res. 12, 443 (1979)

    Article  CAS  Google Scholar 

  21. A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am. Chem. 111, 3051 (1989)

    Article  CAS  Google Scholar 

  22. D.A. Judd, J.H. Nettles, N. Nevins, J.P. Snyder, D.C. Liotta, J. Tang, J. Ermolieff, R.F. Schinazi, C.L. Hill, J. Am. Chem. 123, 886 (2001)

    Article  CAS  Google Scholar 

  23. B.L. Moskovitz, Antimicrob. Agents Chemother. 32, 1300 (1988)

    Article  CAS  Google Scholar 

  24. X. Wang, J. Liu, M.T. Pope, Dalton Trans. 5, 957 (2003)

    Article  Google Scholar 

  25. X. Wang, F. Li, S. Liu, M.T. Pope, J. Inorg. Biochem. 99, 452 (2005)

    Article  CAS  Google Scholar 

  26. S. Dianat, A.K. Bordbar, S. Tangestaninejad, B. Yadollahi, S.H. Zarkesh-Esfahani, P. Habibi, Chem.-Biol. Interact. 215, 25 (2014)

    Article  CAS  Google Scholar 

  27. I. Kozhevnikov, Catalysis by polyoxometalates (Wiley, Chichester, West Sussex; New York, 2002), p. 201

    Google Scholar 

  28. Y. Yang, J. He, X. Wang, B. Li, J. Liu, Transition Met. Chem. 29, 96 (2004)

    Article  CAS  Google Scholar 

  29. C. Cibert, C. Jasmin, Biochem. Biophys. Res. Commun. 108, 1424 (1982)

    Article  CAS  Google Scholar 

  30. M. Cholewa, G. Legge, H. Weigold, G. Holan, C. Birch, Life Sci. 54, 1607 (1994)

    Article  CAS  Google Scholar 

  31. L. Ni, P. Greenspan, R. Gutman, C. Kelloes, M.A. Farmer, F.D. Boudinot, Antiviral Res. 32, 141 (1996)

    Article  CAS  Google Scholar 

  32. S. Dianat, A.-K. Bordbar, S. Tangestaninejad, B. Yadollahi, R. Amiri, S.-H. Zarkesh-Esfahani, P. Habibi, J. Inorg. Biochem. 152, 74 (2015)

    Article  CAS  Google Scholar 

  33. T.J.R. Weakley, S.A. Malik, J. Inorg. Nucl. Chem. 29, 2935 (1967)

    Article  CAS  Google Scholar 

  34. X.-H. Wang, J.-F. Liu, Y.-G. Chen, Q. Liu, J.-T. Liu, M.T. Pope, J. Chem. Soc. Dalton Trans. 7, 1139 (2000)

    Article  Google Scholar 

  35. S. Mahadevan, M. Palaniandavar, Inorg. Chem. 37, 693 (1998)

    Article  CAS  Google Scholar 

  36. J. Liu, H. Zhang, C. Chen, H. Deng, T. Lu, L. Ji, Dalton Trans. 1, 114 (2003)

    Article  Google Scholar 

  37. X. Jiang, L. Shang, Z. Wang, S. Dong, Biophys. Chem. 118, 42 (2005)

    Article  CAS  Google Scholar 

  38. F. Arjmand, M. Aziz, M. Chauhan, J. Inclusion Phenom. Macrocyclic Chem. 61, 265 (2008)

    Article  CAS  Google Scholar 

  39. C. Jasmin, J.-C. Chermann, G. Herve, A. Teze, P. Souchay, C. Boy-Loustau, N. Raybaud, F. Sinoussi, M. Raynaud, J. Natl Cancer Inst. 53, 469 (1974)

    CAS  Google Scholar 

  40. J.R. Lakowicz, G. Weber, Biochemistry 12, 4161 (1973)

    Article  CAS  Google Scholar 

  41. M.R. Eftink, C.A. Ghiron, Anal. Biochem. 114, 199 (1981)

    Article  CAS  Google Scholar 

  42. M. Howe-Grant, K.C. Wu, W.R. Bauer, S.J. Lippard, Biochemistry 15, 4339 (1976)

    Article  CAS  Google Scholar 

  43. D. Chuan, W. Yu-xia, W. Yan-li, J. Photochem. Photobiol. A 174, 15 (2005)

    Article  Google Scholar 

  44. M. Dehkordi, A.-K. Bordbar, M. Mehrgardi, V. Mirkhani, J. Fluoresc. 21, 1649 (2011)

    Article  CAS  Google Scholar 

  45. Vaidyanathan G. Vaidyanathan, Balachandran U. Nair, Eur. J. Inorg. Chem. 2003, 3633 (2003)

    Article  Google Scholar 

  46. Vaidyanathan G. Vaidyanathan, Balachandran U. Nair, Eur. J. Inorg. Chem. 2004, 1840 (2004)

    Article  Google Scholar 

  47. H. Li, X.-Y. Le, D.-W. Pang, H. Deng, Z.-H. Xu, Z.-H. Lin, J. Inorg. Biochem. 99, 2240 (2005)

    Article  CAS  Google Scholar 

  48. D.L. Boger, B.E. Fink, S.R. Brunette, W.C. Tse, M.P. Hedrick, J. Am. Chem. 123, 5878 (2001)

    Article  CAS  Google Scholar 

  49. B. Selvakumar, V. Rajendiran, P. Uma, H. Stoeckli-Evans, M. Palaniandavar, J. Inorg. Biochem. 100, 316 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by the Research Council of University of Isfahan and University of Hormozgan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dianat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dianat, S., Bordbar, A.K., Tangestaninejad, S. et al. ctDNA interaction of Co-containing Keggin polyoxomolybdate and in vitro antitumor activity of free and its nano-encapsulated derivatives. J IRAN CHEM SOC 13, 1895–1904 (2016). https://doi.org/10.1007/s13738-016-0906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0906-y

Keywords

Navigation